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Abstract
It is known that arteries in their natural position are always subject to a
longitudinal stress. However, the effect of this strong longitudinal tension
has seldom been addressed. In this paper, we point out that the traditional
pulse wave velocity formulae considering only the circumferential elasticity
fail to include all the important energies. We present a vigorous derivation of
a pressure wave equation, the pressure wave equation with total energy, which
considers all the important energies of the whole arterial system by treating the
arterial wall and the blood as one system. Our model proposes that the energy
transport in the main arterial system is primarily via the transverse vibration
motion of the elastic wall. The final equation indicates that the longitudinal
stress is essential and the high frequency phase velocity is related to the
longitudinal tension along the arterial wall and its Young’s shearing modulus.
By applying this equation, we suggest that longitudinal elastic property is
an important factor in hemodynamics and in the treatment of cardiovascular
diseases.

Keywords: pulse wave velocity (PWV), hemodynamics, compliance,
longitudinal tension

0967-3334/04/061397+07$30.00 © 2004 IOP Publishing Ltd Printed in the UK 1397

http://stacks.iop.org/pm/25/1397


1398 Y-Y Lin Wang et al

1. Introduction

Pulse wave velocity (PWV) is an index of arterial stiffness (Blacher et al 1999) and arterial
stiffness is a predictor of cardiovascular mortality in hypertensive patients (Laurent et al 2001).
O’Rourke et al (2002) stated that the most hallowed measure of arterial stiffness is pulse wave
velocity. The Moens–Kortweg’s formula for the PWV has been widely used since1878.

Starting from Euler (1755), hemodynamic theories have been expressed as blood
(fluid) flowing through vessels (pipe) (Noordergraaf 1978, Milnor 1989, Fung 1996,
Nichols and O’Rourke 1998, Li 2000). Based on this model, the Navier–Stokes equation
is widely used to describe this fluidic system. However, Milnor et al (1966) pointed out that
the kinetic energy contributes merely 2 to 7% of the total ventricular output under basal resting
conditions. This suggests that the traditional model where the blood is adopted as the primary
system and the elastic wall as its boundary is far from complete.

Bergel (1961) and McDonald (1974) found that the natural length of most of the arteries
is never reached and a considerable amount of force is needed to pull it to its in vivo length.
The in situ longitudinal strain was studied by Han and Fung (1995). Arteries are subject to a
longitudinal tension in natural position. What is the effect of this arterial structure?

Recently, we pointed out that the area gradient is automatically accompanied with
the pressure gradient for a compliant artery. We further quantitatively estimated that the
contribution of the area gradient force is in comparable order to the pressure gradient force
for the axial blood flow (Jan et al 2004). Most studies in PWV, including the derivation of
the Moens–Kortweg’s formula, considered the pressure gradient force only and omitted the
area gradient force without giving any justification. The main reason is that retention of the
area gradient force term will cause the derivation of a linear wave equation to be inaccessible.
Some researchers tried to take the oscillating wall as a correction factor, which resulted in
complicated final equations and parameters, such as the work of Womersley (1955).

To overcome this difficulty, we construct a model that takes the blood and the vessel
together as one system so that the interaction forces between them become the internal forces.
By observing the large longitudinal stretch, we construct a pressure wave model that is similar
to a transverse vibration wave in a stretched elastic string. In this new model, energies
associated with both the axial motion and the transverse motion of the blood and the elastic
vessel are included. Furthermore, the linearity of the final wave equation is still attainable.

By analyzing the new model, we find that the longitudinal stress is essential for energy
transportation in the circulatory system. In addition, we deduce that the PWV is related to the
longitudinal elastic properties of the artery.

2. Theory: a vigorous derivation of the pressure wave equation with total energy

The arterial wall and the blood were treated as two separate systems in most of the
hemodynamics study. For example, in the derivations of the Moens–Korteweg’s equation
(Moens 1878) and the Womersley equation (Womersley 1955), the blood was taken as the
main system and the arterial wall was taken as its boundary. However, there is high energy
transfer between the blood and the elastic wall. The interaction forces between the blood and
the vessel are too complicated to be expressed precisely in mathematical form. Nevertheless,
the forces are so important that we cannot either neglect them or take them as a correction term
without giving a logical reason.

We tackle this problem by constructing a model that combines the blood and the vessel
together as one system so that the interaction forces between them become the internal forces,
avoiding the difficulties in managing the boundary between the blood and the vessel.
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Figure 1. A small element of azimuth angle dθ of the arterial segment is the basic system to be
studied. It is composed of a thin layer of vessel with thickness hw and a wedge-shaped fluid. The
element is in contact with the surrounding via five surfaces at the vessel and four surfaces at the
fluid.

(This figure is in colour only in the electronic version)

We assume the cross section of the artery is circular with inner radius r(z, t), where z is
the axial position and t is the time. The radial equation of motion is studied by taking a small
element of azimuth angle dθ from the cylindrical segment of axial length dz. The element
is composed of a thin layer of vessel of width hw and a wedge-shaped fluid (figure 1). It is
in contact with the surroundings via five surfaces at the vessel and four surfaces at the fluid.
The Newton’s equation of motion of this element is determined by the forces acting on these
nine surfaces. The complicated forces acting on the adjacent surface between the fluid and the
elastic vessel are internal forces and will cancel each other due to Newton’s third law.

The pressure forces A1P̄ 1 and A2P̄ 2 act on surfaces 1 and 2 by the outside adjacent fluids
in opposite axial directions, and the total effect is an area gradient force accompanied with a
pressure gradient force. Both forces are in the axial direction and would not contribute to our
equation in radial direction.

The pressure forces acting normally on surface 3 and 4 by the adjacent fluid will contribute
a net force Fp in the radial direction:

Fp = (A3P̄ + A4P̄ ) sin(dθ/2) = P̄ r dz dθ. (1)

The elastic vessel is subjected to a longitudinal tension Tw per unit circumferential length.
Longitudinal stretching forces Twr1 dθ and Twr2 dθ are acting outwards tangentially by outside
vessels contacting the surfaces I and II. The local slopes (∂r/∂z) at z and z + dz are small but
different, there will be an effective tension force FT in the radial direction, and

FT =
(

Twr2 dθ
∂r

∂z

)
II

−
(

Twr1 dθ
∂r

∂z

)
I

= Twr dθ
∂2r

∂z2
dz. (2)
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This force is quite similar to the transverse force term arising from the longitudinal tension in
the case of transverse wave in an elastic string (Kreyszig 1999).

We further assume the elastic vessel obeys the Hooke’s rule, so that the outside elastic
vessel elements adjacent to surface I, and surface II will act restoring shearing stresses on the
element system, the resulting shearing force Fs is in the radial direction and

Fs =
(

ErZhwr2 dθ
∂r

∂z

)
II

−
(

Erzhwr1 dθ
∂r

∂z

)
I

= Erz hwr dθ
∂2r

∂z2
dz. (3)

Here Erz is the shearing modulus of elasticity of the vessel.
Similarly, assuming the wall has circumferential elastic modulus Eθ , thus on surfaces III

and IV, there are restoring circumferential stresses acting by the outside adjacent vessels. The
vector sum of these two forces is called the restoring circumferential force Fc. It is in the
negative radial direction and

Fc = −2Eθ

�r

r
hw dz sin(dθ/2) = −Eθhw

�r

r
dθ dz (4)

where �r = r − r0 and r0 is the static radius.
On the upper surface, there is local external pressure P0(z), it will contribute a force FP0 ,

which is in the negative radial direction, and

FP0 = −P0r dθ dz. (5)

Next, we consider the resistance force Ff in the radial direction acting on the element system
that is conducting a transverse vibration motion. This resistance force is due to the viscosity of
the blood, the viscoelasticity of the wall as well as the conditions of the surrounding medium.
For simplicity, we assume that Ff is proportional to the radial velocity dr/dt , and

Ff = −R
dr

dt
r dθ dz (6)

where R is the resistance constant. Here we will apply the Newton’s equation of motion of
the basic element system only in the radial direction.

Let Pr be the momentum of the element in the radial direction. If we assume there is a
thin layer of thickness hb and density ρb of blood moving transversely with the elastic vessel
that is of thickness hw, density ρw and velocity ∂r/∂t , then

Pr = µ∂r/∂t rdθ dz = µ
∂r2

∂t
dθ

dz

2
. (7)

Here µ = ρwhw + ρbhb.
Thus, the Newton’s equation of motion becomes

∂Pr

∂t
= Fp + FP0 + Ff + Fc + FT + FS. (8)

We may substitute equations (1) to (7) into equation (8) and integrate over θ from zero to 2π .
By defining S = πr2, the cross section of the local vessel, we have

µ
∂2S

∂t2
+ R

∂S

∂t
+ 2π [(Eθhw�r/r) − r(p̄ − P0)] = τ

∂2S

∂z2
+ Fext. (9)

Here, τ = ErZhw + Tw. Fext is any other additional external force per unit axial length
acting on the arterial system. For example, if the heart gives an input force F(t) at z = ξ ,
we may write Fext(z, t) = F(t)δ(z − ξ), where δ(z − ξ) is a delta function. The area
compliance CA is defined as CA = dS

dP
, and the gauge pressure P is defined as the difference
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between the internal fluid pressure P̄ (z, t) and the surrounding external pressure P0(z). That is
P(z, t) = P̄ (z, t) − P0(z).

Thus equation (9) becomes

µ
∂2P

∂t2
+ R

∂P

∂t
+ κP = τ

∂2P

∂z2
+

1

CA

Fext. (10)

Here

κ ∼= Eθhw

r2
− 2πr

CA

. (11)

Equation (10) can be further expressed as

∂2P

∂t2
+ b

∂P

∂t
+ ω2

0P = V 2
∞

∂2P

∂z2
+

2πr0

LCA

Fext. (12)

Here ω2
0 = κ/µ, and the high frequency phase velocity V∞ =

√
τ
µ

.

Or we may express it as

V∞ =
√

T + SwErz

L
. (13)

Here T = 2πr0Tw is the longitudinal tension along the elastic vessel, Sw = 2πr0hw is the
cross sectional area of the elastic wall, L = 2πr0µ = 2πr0(ρwhw + ρbhb) and is the mass per
unit axial length of the vessel and the adherent blood that conducts the transverse vibration.

We name equation (10) or equation (12) as the pressure wave equation with total energy.
The pressure wave equation derived here is similar to the wave equation on a stretched elastic
string. Both of them can be applied to systems of comparable or higher dimension wavelength.
Both are based on the same assumption that the slope due to the wave vibration is small, i.e.,
the amplitude of the radial oscillation is smaller than the wavelength of the pressure wave,
which is a perfect fit for the real physiological condition of any arterial system.

3. Result and discussion

The high frequency phase velocity (equation (13)) in the pressure wave equation with total
energy is similar to the Moens–Koteweg’s pulse wave velocity formula, which depends on
the geometry and mass density of the arterial system and on the stiffness of the arterial wall.
However, in Moens–Korteweg’s formula or many other modified formulae, the stiffness is
counted through the Young’s modulus of elasticity related to the circumferential stretching,
while our formula indicates that PWV is mainly associated with the Young’s shearing modulus
and the longitudinal tension of the blood vessel.

Traditionally, the usual justification for focusing on the longitudinal equation of motion
of the blood is that the longitudinal velocity component of the blood is much larger than the
radial one. However, the kinetic power is only 2% to 7% of the total ventricular output under
basal resting conditions (Milnor et al 1966). Exchanging the roles of the perturbation and the
main Hamiltonian leads to inaccurate equations.

In contrast, our derivation of the equation of motion takes all the important energies
including pressure energy, kinetic energy and elastic potential energies into consideration.
The circumferential elastic energy is related to the area compliance CA, while the longitudinal
elastic energy is related to the shearing modulus of elasticity Erz of the vessel and longitudinal
tension Tw per unit circumferential length. The effect of the circumferential elasticity on the
wave velocity for different frequencies could be linked via ω2

0 or κ in equation (11).
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The average percentage of the relative shortening of artery in terms of in vivo length
ranges 21% to 42% (Fuchs 1900, Bergel 1961, McDonald 1974). This stretching structure
facilitates the propagation of the transverse vibration wave, which is analogous to pulling an
elastic string tightly to make the transverse vibration possible.

The circumferential elastic property does help transforming the local blood pressure
energy into local axial kinetic energy of the blood. However, if we neglect the local slope of
the elastic vessel, as most of the hemodynamic studies did, the pressure wave cannot propagate
long due to the viscosity of the blood. Neglecting the local slope cannot be justified by arguing
that the variation of the tube radius is small as compared with either the static radius of the
artery or the wavelength of the pressure wave.

The blood vessel can be described as a bundle of oscillating strings with longitudinal
stretching. The restoring shearing stress and the radial component of the tension arising from
the local slope of the string make the pressure wave traveling from one Windkessel unit to the
adjacent Windkessel unit as long as the longitudinal tension is high enough. This phenomenon
can be understood by watching small slope transverse vibration wave in a string; the wave can
exist so long as the string is under high tension.

Recently, we (Lin Wang et al 2004) gave a short communication to propose some
mechanism of the circulatory system. Avolio and Kerkhof (2004) commented that many
of the concepts need further investigation and in vivo experimental validation. We stated that
the ultimate purpose of the circulation is to facilitate the whole arterial system maintaining a
steady transverse vibration, that is, to keep a large area of oscillation for all the blood vessels.
The amplitude of the local area wave is proportional not only to the local pressure, but also to
the local distensibility. Therefore, a compliant arterial wall is more efficient than a stiff one
under the same pressure pulse.

It has been studied that the circumferential elastic modulus varies with the pressure (Bergel
1961); here we propose that the effect of the longitudinal stretch on the wall’s compliance is
also an important factor that needs to be studied physiologically. A string with longitudinal
stress is easier to oscillate than a loose one; however, if it is too tight, the string’s structure
will be distorted and its natural frequencies are changed. Similarly, in the arterial system,
there is an optimal condition in the longitudinal stress that makes the circulation reach its
highest efficiency in energy transportation. Finding ways to tune the arterial longitudinal
elastic properties to meet the optimized energy consumed is an important issue in the healing
of many diseases.

Bank and Kaiser (1998) demonstrated that the effect of smooth muscle relaxation
decreases PWV without altering the arterial distensibility in normal human subjects, which
implies that the PWV not merely depends on the circumferential elasticity. The smooth muscle
relaxation might change the longitudinal elastic properties and therefore change the PWV as
proposed by equation (13).

We thus propose that future studies for the treatment of cardiovascular diseases should
take the effects of the longitudinal elastic properties into account.

In deriving the pressure wave equation with total energy, only the following assumptions
are made: (1) the cross section of the artery is circular; (2) the elastic vessel obeys the
Hooke’s rule; and (3) the slope due to the wave vibration is small, i.e., the amplitude of
the radial oscillation is smaller than the wavelength of the pressure wave. These reasonable
assumptions justify the use of this equation in many conditions in the main arterial system.
For example, a geometric tapering does not necessarily induce reflection if the tube adjusts its
elastic properties so that there is no phase velocity mismatch. At the bifurcation point, we can
solve the equation by applying suitable boundary conditions; such as the single value of the
pressure wave and the continuity of the blood flow. Our work provides a starting equation for
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hemodynamics research. All parameters are clearly defined in terms of measurable quantities.
Those parameters and the detailed solution of various cases can only be obtained through
many further in vivo and simulation studies.
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